Stationary determinantal processes: Phase transitions, Bernoullicity, domination, and entropy
نویسنده
چکیده
We study a class of stationary processes indexed by Z that are defined via minors of d-dimensional (multilevel) Toeplitz matrices. We obtain necessary and sufficient conditions for phase multiplicity (the existence of a phase transition) analogous to that which occurs in statistical mechanics. Phase uniqueness is equivalent to the presence of a strong K property, a particular strengthening of the usual K (Kolmogorov) property. We show that all of these processes are Bernoulli shifts (isomorphic to i.i.d. processes in the sense of ergodic theory). We obtain estimates of their entropies and we relate these processes via stochastic domination to product measures.
منابع مشابه
Stationary Determinantal Processes : Phase Transitions , Bernoullicity , Entropy , and Domination
We study a class of stationary processes indexed by Z that are defined via minors of d-dimensional Toeplitz matrices. We obtain necessary and sufficient conditions for the existence of a phase transition (phase multiplicity) analogous to that which occurs in statistical mechanics. The absence of a phase transition is equivalent to the presence of a strong K property, a particular strengthening ...
متن کاملStationary Determinantal Processes : Phase Transitions , Bernoullicity , Entropy , and Domination by
We study a class of stationary processes indexed by Z that are defined via minors of d-dimensional Toeplitz matrices. We obtain necessary and sufficient conditions for the existence of a phase transition (phase multiplicity) analogous to that which occurs in statistical mechanics. The absence of a phase transition is equivalent to the presence of a strong K property, a particular strengthening ...
متن کاملStationary Determinantal Processes: Phase Multiplicity, Bernoullicity, Entropy, and Domination
We study a class of stationary processes indexed by Z that are defined via minors of d-dimensional (multilevel) Toeplitz matrices. We obtain necessary and sufficient conditions for phase multiplicity (the existence of a phase transition) analogous to that which occurs in statistical mechanics. Phase uniqueness is equivalent to the presence of a strong K property, a particular strengthening of t...
متن کاملThe Rate of Entropy for Gaussian Processes
In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...
متن کاملConditional Intensity and Gibbsianness of Determinantal Point Processes
The Papangelou intensities of determinantal (or fermion) point processes are investigated. These exhibit a monotonicity property expressing the repulsive nature of the interaction, and satisfy a bound implying stochastic domination by a Poisson point process. We also show that determinantal point processes satisfy the so-called condition ( λ), which is a general form of Gibbsianness. Under a co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002